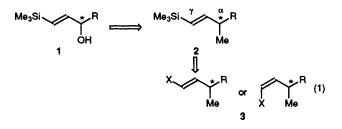
1595

Regio- and Stereo-controlled Methylation of γ -Silylallyl Phosphates by π -Allylpalladium Methodology


Hirokazu Urabe, Hiroshi Inami and Fumie Sato*

Department of Biomolecular Engineering, Tokyo Institute of Technology, 4259, Nagatsuta-cho, Midori-ku, Yokohama 227, Japan

Palladium-catalysed methylation of diethyl phosphates derived from optically active γ -trimethylsilylallyl alcohols proceeds in a highly regio- and stereo-selective manner to give optically active vinylsilanes having an allylic methyl group.

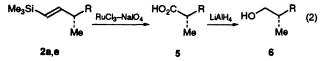
Palladium-catalysed substitution of allyl esters with soft nucleophiles, such as active methylene compounds, is a well-documented, standard method for allylic alkylation and much data have been accumulated on its regio- and stereochemical aspects.¹ However, not much information has been reported on allylic alkylation with a Grignard reagent, a typical hard nucleophile,^{†2} although some synthetic reactions involving alkylations of π -allylpalladium themselves have been reported.³ Accordingly, copper,⁴ nickel⁵ and, most recently, iron⁶ catalysts have been much more frequently used in this type of transformation⁷ and the palladium methodology generally tends to be ignored. Herein we describe a palladiumcatalysed alkylation of an allyl phosphate with a methyl Grignard reagent, in which the use of palladium is definitely advantageous.

Highly optically active γ -trimethylsilylallyl alcohols 1⁸ are available by kinetic resolution in Sharpless asymmetric epoxidations⁹ and have been used as starting materials for the synthesis of biologically active substances.¹⁰ If the hydroxy groups are successfully transformed to α -methyl groups without loss of the enantiopurities, vinyl silanes 2 result with an optically active tertiary carbon centre bearing a methyl. [eqn. (1)]. Manipulation of the vinyl silane moiety of 2 as illustrated in eqn. (1) where X stands for H, alkyl, aryl, acyl, halogen, CN, Bu₃Sn, *etc.* based on well-precedented transformations^{10,11} makes 2 a versatile chiral intermediate for the synthesis of terpenoids and other naturally occurring products.¹²

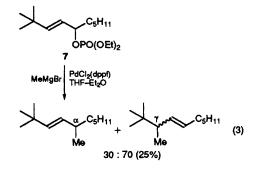
The crucial methylation step seemed, at first, straightforward by a two step sequence which consists of conversion of the hydroxy group of 1 to a leaving group and then reaction with a methylmetal in the presence of a transition metal catalyst mentioned above. A wide variety of combinations of the derivatives of 1 (phosphate, carboxylates and methanesulfonate) and organocopper reagents including MeCu, MeM/ CuX cat., MeCu(CN)M, Me₂CuM and MeCu(Th)(CN)M₂ (M = Li or MgBr, Th = 2-thienyl)⁴ showed mostly γ -preferences in the methylation. A reaction of the methanesulfonate

[†] Palladium-catalysed substitution of allylic derivatives with a Grignard reagent is quite rare. This is partly due to a bias that side reactions, *e.g.*, ester hydrolysis, reduction *via* β -hydride transfer and homo-coupling, make this transformation complicated.

Table 1 Alkylation of 4 with MeMgBr


		MeMgBr PdCl2(dppf) PO(OEt)2 (5 m0%) v.) THF-Et2O*		⊾ Me ₃ S	γ α R Me 2			
	4					2		
Entry	R	E.e. (Config.)	MeMgBr/ equiv.	<i>T/</i> ⁰C	<i>t/</i> h	α/γ^b	Yield (%) ^c	E.e. (%) (Config.) ^d
1	C_5H_{11} a		1.5	-20	15	(98:2)	(89)	
2 3	a a o H h	>99% (R)	3 ,,	$-20 \\ 0 \\ 20$	36 16	97:3(99:1) (98:2)	69(91) (100)	98 (<i>S</i>)
5	$C_{8}H_{17}\mathbf{b}$ $(CH_{2})_{4}OTBS\mathbf{c}$,, ,,	-20 -20	17 18	97:3 98:2	78 77	
6 7 8 9	CH ₂ CH=CHC ₅ H ₁₁ -cis d CH ₂ CHMe ₂ e CH ₂ C(=CH ₂)CH ₂ OTBS f Cyclo-C ₆ H ₁₁ g	>99% (R)	" 3.6 3	0 0 10 Room temp.	17 12 48 6	95:5 96:4(97:3) 97:3 71:29(75:25)	82 60(81) 60(87) ^e 66(77)	97 (<i>S</i>)

^a Et₂O came from the Grignard reagent. ^b Determined by ¹H NMR of a crude or an isolated sample. When an isolated product was analysed, there was no evidence that regioisomers had been separated during isolation. Ratio determined by GLC analysis of a crude sample is shown in parentheses. ^c Isolated, combined yield of the regioisomers. Yield determined by ¹H NMR in parentheses. ^d See text. ^e Methylation to the TBS (Bu^tMe₂Si) ether moiety was only a trace if any.


of 1 [($R = C_5H_{11}$, >99% e.e.) (enantiometric excess)] and Me₂CuLi afforded the highest α : γ ratio of 78:22, but the optical purity of the α -product was disappointingly low (9%) e.e.). The use of nickel catalysts [NiCl2(PPh3)2, NiCl2(dppp)‡ or Ni(acac)₂^{‡]⁵} together with MeMgBr or MeZnCl did not improve this reaction (α : γ ratio of 76:24). The most recently introduced Fe-catalysed alkylation of the diethyl phosphate of $1 (R = C_5 H_{11}, >99\% e.e.)$ [MeMgBr and 5 mol% Fe(acac)₃]⁶ achieved an almost complete regiochemical control (α : γ > 99:1), but the enantiopurity of the product did not exceed 93% even under carefully optimized conditions. However, we finally found that exposure of the diethyl phosphates of 1 to methylmagnesium bromide and PdCl₂(dppf)^{‡2} (5 mol%) led to a very clean reaction to give highly optically active vinylsilanes 2 having the methyl group at their allylic position. The results are summarized in Table 1.§

Of the alcohol derivatives involving phosphates, carboxylates and silyl ether, diethyl phosphate 4 was marginally best, because it is readily prepared from 1 [BuLi, $(EtO)_2POCl$, 72–93% yield]¹³ and acts as a reactive leaving group, but is still resistant to P–O bond cleavage by the Grignard reagent. Other Pd catalysts, Pd(PPh₃)₄ and PdCl₂(PPh₃)₂, showed less satisfactory regioselectivities. The number of equivalents of MeMgBr (which we usually added in excess to ensure a complete reaction) and the reaction temperature did not affect

‡ Abbreviations used: dppp: 1,3-bis(diphenylphosphino)propane; Hacac: pentane-2,4-dione; dppf: 1,1'-bis(diphenylphosphino)ferrocene; MTPA: α-methoxy-α-(trifluoromethyl)phenylacetic acid. the regioselectivity (entries 1–3). γ -Trimethylsilylallyl phosphates **4** having various primary alkyl chains (R in Table 1) showed regioselectivites of 95:5–99:1 with the olefin geometry being exclusively *trans* (>99:1) (entries 1–8), but substitution with a cyclohexyl group showed only a modest α -selectivity (entry 9). As shown in Table 1, the stereoselectivity has been verified to be excellent in a couple of representative cases (entries 2 and 7): virtually complete, overall inversion of configuration¹⁴ at the alcoholic carbon of the starting ester has been established by ¹H NMR chiral shift study [Ag(fod)-Eu(hfc)₃¹⁵] of the vinylsilane **2** as well as by the MTPA‡ method¹⁶ after derivatization to the known, optically active alcohol **6** [eqn. (2)].¹⁷ The observed inversion of configuration is consistent with the stereochemical outcome found for the π -allyl palladium formation (inversion) and its reaction with a hard nucleophile (retention).^{1d,14}

The sterically demanding Me₃Si group at the γ position was most likely to account for this excellent α -regioselectivity^{18,19} as evidenced by the fact that increasing the size of the R group in another allylic terminus decreased the regioselectivity (*cf.* entries 1–8 and entry 9). However, this interpretation is so superficial that a *tert*-butyl analogue (7) of 4 gave a mixture of several products in which the α -methylated product was surprisingly a minor constitutent under the similar reaction conditions [(eqn. (3)]!. Thus, the electronic effect of the silyl group should also be responsible for the clean methylation.

[§] Typical procedure: To a stirred solution of 4a (R, >99% e.e., 20 mg, 0.0595 mmol) in tetrahydrofuran (THF) (0.6 ml) under nitrogen was added PdCl₂(dppf) (2.2 mg, 0.003 mmol). The mixture was cooled to $-78 \,^{\circ}$ C and MeMgBr [3.0 mol dm⁻³ in diethyl ether (Aldrich) 0.060 ml, 0.179 mmol] was added dropwise. (Note: Adjustment of the solvent composition to *ca.* 10 : 1-THF/ether is strongly recommended to get a reproducible result). After stirring for 30 min at the same temperature, the resultant mixture was warmed to $-20 \,^{\circ}$ C and was stirred for an additional 7 h. Then NH₄Cl (sat.) was added and the mixture was extracted with diethyl ether. The combined organic layers were dried over MgSO₄ and concentrated *in vacuo*. The residue, ¹H NMR analysis of which had revealed the presence of the desired methylated compound in 91% yield, was chromatographed on silica gel with hexane to afford **2a** (*S*, 98% e.e., 8.1 mg, 69%) as an oil. See text for isomeric ratio and e.e.

J. CHEM. SOC., CHEM. COMMUN., 1993

The highly selective methylation of the allyl phosphate with Grignard reagent is a new route to a series of allylic alkylations catalysed by palladium and is synthetically useful to provide versatile building blocks having a chiral tertiary alkyl centre.

Received, 29th June 1993; Com. 3/03729K

References

- Reviews: (a) B. M. Trost, Tetrahedron, 1977, 33, 2615; (b) Acc. Chem. Res., 1980, 13, 385; (c) J. Tsuji, Organic Synthesis with Palladium Compounds, Springer Verlag, Berlin, 1980; (d) B. M. Trost and T. R. Verhoeven, in Comprehensive Organometallic Chemistry, ed. G. Wilkinson, F. G. A. Stone and E. W. Abel, Pergamon Press, Oxford, 1982, vol. 8, p. 799; (e) J. Tsuji, Tetrahedron, 1986, 42, 4361; (f) B. M. Trost, Angew. Chem., Int. Ed. Engl., 1988, 28, 1173; (g) C. G. Frost, J. Howarth and J. M. J. Williams, Tetrahedron: Asymmetry, 1992, 3, 1089.
- 2 Phenylation has been reported: T. Hayashi, M. Konishi, K.-I. Yokota and M. Kumada, J. Organomet. Chem., 1985, 285, 359.
- 3 Methyl Grignard reagent: Y. Castanet and F. Petit, Tetrahedron Lett., 1979, 3221; allyl Grignard reagent: A. Goliaszewski and J. Schwartz, J. Am. Chem. Soc., 1984, 106, 5028; T. Hayashi, M. Konishi and M. Kumada, J. Chem. Soc., Chem. Commun., 1984, 107.
- 4 G. H. Posner, An Introduction to Synthesis Using Organocopper Reagents, Wiley, New York, 1980; B. H. Lipshutz and S. Sengupta, Org. React. (N.Y.), 1992, 41, 135; B. H. Lipshutz, Synthesis, 1987, 325.

- 5 H. Felkin and G. Swierczewski, *Tetrahedron*, 1975, **31**, 2735; P. W. Jolly, in *Comprehensive Organometallic Chemistry*, ed. G. Wilkinson, F. G. A. Stone and E. W. Abel, Pergamon Press, Oxford, 1982, vol. 8, p. 713.
- 6 A. Yanagisawa, N. Nomura and H. Yamamoto, Synlett, 1991, 513.
- 7 Review: R. M. Magid, Tetrahedron, 1980, 36, 1901.
- 8 Both enantiomers of 1 are readily available, see Y. Kitano, T. Matsumoto and F. Sato, *Tetrahedron*, 1988, 44, 4073.
- 9 Reviews: M. G. Finn and K. B. Sharpless, in Asymmetric Synthesis, ed. J. D. Morrison, Academic Press, New York, 1985, vol. 5, p. 247; A. Pfenninger, Synthesis, 1986, 89; R. A. Jonson and K. B. Sharpless, in Comprehensive Organic Synthesis, ed. B. M. Trost, Pergamon Press, Oxford, 1991, vol. 7, ch. 3-2.
- 10 Review: F. Sato and Y. Kobayashi, Synlett, 1992, 849.
- 11 E. W. Colvin, Silicon in Organic Synthesis, Butterworths, London, 1981, W. P. Weber, Silicon Reagents for Organic Synthesis, Springer-Verlag, Berlin, 1983.
- 12 J. S. Glasby, Encyclopaedia of the Terpenoids, Wiley, Chichester, 1982.
- 13 A. Yanagisawas, N. Nomura, Y. Noritake and H. Yamamoto, *Synthesis*, 1991, 1130.
- 14 G. Consiglio and R. M. Waymouth, Chem. Rev., 1989, 89, 257.
- 15 T. J. Wenzel and R. E. Sievers, J. Am. Chem. Soc., 1982, 104, 382.
- 16 J. A. Dale and H. S. Mosher, J. Am. Chem. Soc., 1973, 95, 512.
 17 For the preparation of authentic 5, see D. A. Evans and J. M. Takacs, *Tetrahedron Lett.*, 1980, 4233.
- 18 For Pd-catalysed allylic alkylation with active methylene compounds in trimethylsilylallyl systems, see T. Hirao, J. Enda, Y. Ohshiro and T. Agawa, *Tetrahedron Lett.*, 1981, 22, 3079; B. M. Trost and C. R. Self, J. Am. Chem. Soc., 1983, 105, 5942; J. Tsuji, M. Yuhara, M. Minato, H. Yamada, F. Sato and Y. Kobayashi, *Tetrahedron Lett.*, 1988, 29, 343.
- 19 H. Inami, T. Ito, H. Urabe and F. Sato, *Tetrahedron Lett.*, 1993, 34, 5919.